Warning: mkdir(): No space left on device in /var/www/tg-me/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/ds_interview_lib/--): Failed to open stream: No such file or directory in /var/www/tg-me/post.php on line 50
Библиотека собеса по Data Science | вопросы с собеседований | Telegram Webview: ds_interview_lib/963 -
Telegram Group & Telegram Channel
Как обрабатывается дрейф концепции при обучении моделей с несбалансированными классами во времени

Дрейф концепции возникает, когда со временем меняется распределение данных, в результате чего изменяется связь между признаками и метками. Это особенно критично при наличии несбалансированных классов — например, в задачах по выявлению мошенничества, где миноритарный класс может смещаться незаметно, но существенно.

В процессе обучения дрейф компенсируется регулярным обновлением или переобучением модели на актуальных данных, чтобы сохранить соответствие новым шаблонам.

Также применяются инкрементальные алгоритмы, способные адаптироваться к новым данным без полной переинициализации. Используется подход скользящего окна: устаревшие данные постепенно исключаются из обучающей выборки.

Дополнительно отслеживается динамика распределения миноритарного класса. При изменении его частоты или поведенческих характеристик пересматриваются подходы к выборке и настройки, чувствительные к дисбалансу. Метрики, такие как recall на новых поступлениях, фиксируют отклонения, сигнализируя о необходимости обновлений.

Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/ds_interview_lib/963
Create:
Last Update:

Как обрабатывается дрейф концепции при обучении моделей с несбалансированными классами во времени

Дрейф концепции возникает, когда со временем меняется распределение данных, в результате чего изменяется связь между признаками и метками. Это особенно критично при наличии несбалансированных классов — например, в задачах по выявлению мошенничества, где миноритарный класс может смещаться незаметно, но существенно.

В процессе обучения дрейф компенсируется регулярным обновлением или переобучением модели на актуальных данных, чтобы сохранить соответствие новым шаблонам.

Также применяются инкрементальные алгоритмы, способные адаптироваться к новым данным без полной переинициализации. Используется подход скользящего окна: устаревшие данные постепенно исключаются из обучающей выборки.

Дополнительно отслеживается динамика распределения миноритарного класса. При изменении его частоты или поведенческих характеристик пересматриваются подходы к выборке и настройки, чувствительные к дисбалансу. Метрики, такие как recall на новых поступлениях, фиксируют отклонения, сигнализируя о необходимости обновлений.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/963

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Should You Buy Bitcoin?

In general, many financial experts support their clients’ desire to buy cryptocurrency, but they don’t recommend it unless clients express interest. “The biggest concern for us is if someone wants to invest in crypto and the investment they choose doesn’t do well, and then all of a sudden they can’t send their kids to college,” says Ian Harvey, a certified financial planner (CFP) in New York City. “Then it wasn’t worth the risk.” The speculative nature of cryptocurrency leads some planners to recommend it for clients’ “side” investments. “Some call it a Vegas account,” says Scott Hammel, a CFP in Dallas. “Let’s keep this away from our real long-term perspective, make sure it doesn’t become too large a portion of your portfolio.” In a very real sense, Bitcoin is like a single stock, and advisors wouldn’t recommend putting a sizable part of your portfolio into any one company. At most, planners suggest putting no more than 1% to 10% into Bitcoin if you’re passionate about it. “If it was one stock, you would never allocate any significant portion of your portfolio to it,” Hammel says.

What is Telegram?

Telegram’s stand out feature is its encryption scheme that keeps messages and media secure in transit. The scheme is known as MTProto and is based on 256-bit AES encryption, RSA encryption, and Diffie-Hellman key exchange. The result of this complicated and technical-sounding jargon? A messaging service that claims to keep your data safe.Why do we say claims? When dealing with security, you always want to leave room for scrutiny, and a few cryptography experts have criticized the system. Overall, any level of encryption is better than none, but a level of discretion should always be observed with any online connected system, even Telegram.

Библиотека собеса по Data Science | вопросы с собеседований from ca


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA